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Diagnostic Reasoning

Björn Meder and Ralf  Mayrhofer

Abstract

This chapter discusses diagnostic reasoning from the perspective of  causal inference. The computational 
framework that provides the foundation for the analyses— probabilistic inference over graphical causal 
structures— can be used to implement different models that share the assumption that diagnostic 
inferences are guided and constrained by causal considerations. This approach has provided many 
critical insights, with respect to both normative and empirical issues. For instance, taking into account 
uncertainty about causal structures can entail diagnostic judgments that do not reflect the empirical 
conditional probability of  cause given effect in the data, the classic, purely statistical norm. The chapter 
first discusses elemental diagnostic inference from a single effect to a single cause, then examines more 
complex diagnostic inferences involving multiple causes and effects, and concludes with information 
acquisition in diagnostic reasoning, discussing different ways of  quantifying the diagnostic value of  
information and how people decide which information is diagnostically relevant.
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Diagnostic reasoning is ubiquitous in everyday 
life. A  physician diagnoses diseases from observed 
symptoms. An engineer engages in diagnostic rea-
soning when trying to identify what caused a plane 
to crash. A cognitive scientist reasons diagnostically 
when figuring out if an experimental manipulation 
proved successful in an experiment that did not 
yield any of the expected outcomes. A judge makes a 
diagnostic inference when reasoning how strongly a 
piece of evidence supports the claim that the defen-
dant has committed the crime. More generally, diag-
nostic reasoning concern inferences from observed 
effects to (as yet) unobserved causes of these effects. 
Thus, diagnostic reasoning usually involves a kind of 
backward inference, as people typically infer (often 
unobserved) conditions that existed prior to what 
they have observed (in contrast to predictive reason-
ing from causes to effects, which is a kind of forward 
inference from present conditions or events into the 
future). Diagnostic reasoning from effect to cause 
can, therefore, be conceptualized as a special case of 

inductive inference, in which a datum e, the observed 
effect, is used to update beliefs about a hypothesis c, 
the unobserved target cause of the effect.

Diagnostic reasoning, as discussed in this chap-
ter, needs to be differentiated from other related 
kinds of inference. Diagnostic reasoning is tightly 
connected to explanatory reasoning (see Lombrozo 
& Vasilyeva, Chapter 22 in this volume) and abduc-
tive reasoning (Josephson & Josephson, 1996), as 
all are concerned with reasoning about the causes 
of observed effects. However, the scope and aim dif-
fer in that both explanatory and abductive reason-
ing are broader and less constrained. In diagnostic 
reasoning, as we define it here, the set of potential 
causes is fixed and known; the target inference is 
about the presence of (one of ) these causes (with 
the potential goal of an intervention on these 
causes). In abductive reasoning, by contrast, the set 
of variables the inference operates on is often not 
known a priori and has to be actively constructed. 
In explanatory reasoning, the target of the inference 
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is the explanation of the observed effect by means 
of its causes; the diagnostic inference may be part of 
it, but other considerations play a role as well (see 
Lombrozo & Vasilyeva, Chapter 22 in this volume).

In this chapter, we discuss diagnostic reasoning 
from the perspective of probabilistic causal infer-
ence. Pearl (2000), Spirtes, Glymour, and Scheines 
(1993), and Spohn (1976/ 1978; as cited in Spohn, 
2001) laid the foundations with the development of 
causal Bayes nets theory, which provides a compre-
hensive modeling framework for a formal treatment 
of probabilistic inference over causal graphical mod-
els. This computational framework has been used to 
address several theoretical and empirical key issues 
within a unified account (for overviews, see Rottman 
& Hastie, 2014; Waldmann & Hagmayer, 2013; 
Waldmann, Hagmayer, & Blaisdell, 2006; see also 
chapters in this volume by Cheng & Lu [Chapter 5]; 
Griffiths [Chapter 7]; Oaksford & Chater [Chapter 
19]; Rehder [Chapters 20 and 21]; and Rottman 
[Chapter 6]). Examples include the formal analysis 
of different measures of causal strength (Griffiths & 
Tenenbaum, 2005; Lu, Yuille, Liljeholm, Cheng, & 
Holyoak, 2008), the distinction between inferences 
based on observations and interventions (Lagnado 
& Sloman, 2004; Meder, Hagmayer, & Waldmann, 
2008, 2009; Sloman & Lagnado, 2005; Waldmann 
& Hagmayer, 2005), categorization (Rehder, 2003, 
2010; Waldmann, Holoyak, & Fratianne, 1995), 
causal structure learning (Bramley, Lagnado, & 
Speekenbring, 2015; Coenen, Rehder, & Gureckis, 
2015; Mayrhofer & Waldmann, 2011, 2015a, 
2015b; Steyvers, Tenenbaum, Wagenmakers, & 
Blum, 2003), and analogical reasoning in causal 
domains (Holyoak, Lee, & Lu, 2010).

The framework of probabilistic inference over 
causal graphical models has also provided new path-
ways for the formal analysis of diagnostic reasoning 
in causal domains. Several computational models 
of diagnostic inference have been proposed that 
differ in their theoretical assumptions, technical 
implementation, and empirical scope (Fernbach, 
Darlow, & Sloman, 2011; Meder, Mayrhofer, & 
Waldmann, 2014; Waldmann, Cheng, Hagmayer, 
& Blaisdell, 2008).

The remainder of this chapter is structured 
as follows. We first consider the case of elemental 
diagnostic reasoning, based on a single causal rela-
tion between two events (i.e., cause and effect). We 
discuss different computational models of elemental 
diagnostic reasoning, the issues they address, and 
their role in empirical research as descriptive or nor-
mative models. In the second part of this chapter, 

we discuss more complex cases of diagnostic infer-
ences, involving multiple causes or effects, from 
both a theoretical and an empirical perspective. The 
third section highlights different ways of quantifying 
the diagnostic value of information and how people 
decide which information is diagnostically relevant. 
We conclude by discussing key questions for future 
research and by outlining pathways for developing 
an empirically grounded and normatively justified 
theory of diagnostic causal reasoning.

Elemental Diagnostic Reasoning
In this section, we focus on the most basic type 

of diagnostic causal reasoning, which concerns an 
inference from a single binary effect to a single 
binary cause. We refer to this kind of diagnostic 
inference as elemental diagnostic reasoning. Although 
this most basic type of diagnostic inference seems 
quite simple compared with real- world scenarios 
involving a complex network of multiple causes and 
multiple effects, it highlights a number of critical 
questions about both how people should reason 
diagnostically (i.e., what would constitute an ade-
quate normative model) and how people in fact do 
reason diagnostically (i.e., what would constitute an 
adequate descriptive model).

In the following, we provide an overview of alter-
native models of diagnostic inference from a single 
effect to a single cause and the empirical studies 
that have been used to test the respective models. 
These accounts provide computational- level models 
(in Marr’s, 1982, terminology), in that they specify 
the cognitive task being solved, the information 
involved in solving it, and the rationale by which it 
can be solved (Anderson, 1990; Chater & Oaksford, 
1999, 2008; for critical reviews, see Brighton & 
Gigerenzer, 2012; M.  Jones & Love, 2011). Our 
goals are to highlight the ways in which a causal 
inference perspective provides novel insights into 
the computational analysis of diagnostic reasoning 
and to discuss how different models have informed 
empirical research.

Simple Bayes: Diagnostic Reasoning 
with Empirical Probabilities

When reasoning from effect to cause, for 
instance, when assessing the probability of a par-
ticular disease given the presence of a symptom, it 
seems natural to estimate the conditional probabil-
ity of a cause given the effect. A critical question is 
how exactly this diagnostic probability is inferred. 
Many researchers have endorsed Bayes’s rule 
applied to the empirical probabilities as the natural 
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normative— and potentially descriptive— model for 
computing the diagnostic probability.

Let random variables C and E denote a binary 
cause and binary effect, respectively, and let {c, ¬c} 
and {e, ¬e} indicate the presence and absence of the 
cause and the effect event (Figure 23.1 a). Consider 
a physician examining a sample of 40 patients. 
Each patient has been tested for the presence of 
a certain genetic predisposition (cause event C) 
and the presence of elevated blood pressure (effect 
event E). This set of observations forms a joint fre-
quency distribution over C and E, which can be 
represented in a 2 × 2 contingency table (Figure 
23.1 b). The conditional probability of the cause 
given the effect (i.e., genetic predisposition given 
elevated blood pressure), P(c|e), can be inferred by 
using Bayes’s rule:

P c e
P e c P c

P e
P e c P c

P e c P c P e c P c

|
|

|
| |

( ) =
( )⋅ ( )

( )
=

( )⋅ ( )
( )⋅ ( ) + ¬( )⋅ ¬( ))  

(1)

where P(c) denotes the prior probability (base 
rate) of the cause [with P(¬c)  =  1− P(c)], P(e|c) 
is the likelihood of the effect conditional on the 
presence of the cause, and P(e|¬c) is the likelihood 

of the effect in the absence of the cause. For the 
data shown in Figure 23.1 b, the correspond-
ing (frequentist) estimates are P(c) = 20/ 40 =  .5, 
P(e|c) = 6/ 20 = .3, P(e|¬c) = 2/ 20 = .1, and P(e) = 8/ 
40 = .2. Plugging these numbers into Equation 1 
yields P(c|e) = .75.

An alternative way of computing the diagnos-
tic probability is to estimate it directly from the 
observed joint frequencies, the number of cases in 
which both C and E are present, N c e,( ), and the 
number of cases in which C is absent and E is pres-
ent, N c e¬( ), :

P c e
N c e

N c e N c e
|( ) = ( )

( ) + ¬( )
,

, ,
 (2)

For the data shown in Figure 23.1 b, this com-
putation yields the same result as applying Bayes’s 
rule: P(c|e) = 6/ (6+2) = .75.

Under the simple Bayes account, no refer-
ence is made to the causal processes that may 
have generated the observed data, and no uncer-
tainty regarding the probability estimates is 
incorporated in the model. This model is strictly 
non- causal in that it can be applied to arbitrary 
hypotheses and data; whether these events refer 
to causes or effects does not matter (Waldmann 
& Hagmayer, 2013).

wa wa

wcbc bc
EC
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EC

A

6 14

2 18

Causal structure S1

2 × 2 Contingency table(a) (b)

(c) (d)

Example data

E�ect present
(e)

Cause present
(c) N(c, e) N(c, ¬e)

N(¬c, e) N(¬c, ¬e)Cause absent
(¬c)

E�ect absent
(¬e)

E�ect present
(e)

Cause present
(c)

Cause absent
(¬c)

E�ect absent
(¬e)

Causal structure S0

Figure 23.1 (a) A 2 × 2 contingency table for representing the joint frequency distribution of a binary cause, C = {c, ¬c}, and a binary 
effect, E = {e, ¬e}. (b) Example data set. Numbers denote frequencies of co- occurrence (e.g., cause and effect were both present in 6 
of 40 cases). (c) Causal structure hypothesis S1, the default causal model in power PC theory (bc = prior probability of cause C; wc 
= causal strength of C; wa = strength of background cause A). (d) Causal structure hypothesis S0, according to which C and E are 
independent variables, that there is no causal relation between candidate cause C and candidate effect E (bc = prior probability of cause 
C; wa = strength of background cause A). 
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empiriCal studies
The simple Bayes model has a long- standing 

tradition in research on elemental diagnostic rea-
soning in a broader sense. Starting roughly in the 
1950s, psychologists began using this model as a 
normative, and potentially descriptive, account of 
sound probabilistic reasoning. The most common 
tasks involved book bag and poker chip (or urn) 
scenarios with a well- defined statistical structure 
(e.g., Peterson & Beach, 1967; Phillips & Edwards, 
1966). A  key question was whether and to what 
extent people’s intuitive belief revision would cor-
respond to the prescriptions of Bayes’s rule. Many 
studies found that subjects did take into account 
the diagnostic impact of the observed data, but to 
a lesser extent than prescribed by Bayes’s rule (a 
phenomenon referred to as conservatism; Edwards, 
1968). By and large, however, the conclusion was 
that people have good statistical intuitions, leading 
to the metaphor of “man as intuitive statistician” 
(Peterson & Beach, 1967).

With the advent of the heuristics and biases 
program (Kahneman & Tversky, 1972, 1973; 
Tversky & Kahneman, 1974), research on proba-
bilistic inference and elemental diagnostic reason-
ing continued. However, the studies conducted 
within this program led to a very different view 
of people’s capacity for making sound diagnos-
tic inferences. Findings from scenarios such as the 
lawyer– engineer problem (Kahneman & Tversky, 
1973), the cab problem (Bar- Hillel, 1980), and 
the mammography problem (Eddy, 1982)  seemed 
to indicate that people’s judgments are inconsistent 
with Bayes’s rule and generally are biased and error 
prone. Specifically, it was argued that people tend to 
neglect base rate information (i.e., the prior prob-
ability of the hypothesis) when reasoning diagnosti-
cally. In the mammography problem, for example, 
people were asked to give a diagnostic judgment 
regarding the posterior probability of breast cancer, 
based on a verbal description of the prior probabil-
ity of the disease, P(c), the likelihood of obtaining 
a positive test result for a woman who has cancer, 
P(e|c), and the likelihood of a positive test result for 
a woman who does not have cancer, P(e|¬c). For 
instance, people were told that the prior probability 
of breast cancer is 1%, the likelihood of having a 
positive mammogram given cancer is 80%, and the 
probability of having a positive test result given no 
cancer is 9.6% (e.g., Gigerenzer & Hoffrage, 1995). 
Given these numbers, the posterior probability of 
breast cancer given a positive mammogram is about 
8%. In stark contrast, a common finding was that 

people’s diagnostic judgments of the probability of 
breast cancer given a positive mammogram were 
often much higher than Bayes’s theorem suggests 
(often around 70%– 80%), which was explained by 
assuming that people do not take into account the 
low prior probability of having breast cancer in the 
first place.

However, the claim that people neglect base 
rate information on a regular basis is too strong. 
Koehler (1996; see also Barbey & Sloman, 2007) 
critically reviewed the literature, concluding that 
there are a variety of circumstances under which 
base rates are appreciated. One important factor is 
the way in which probabilistic information is pre-
sented (e.g., specific frequency formats vs. condi-
tional probabilities), which can facilitate or impede 
people’s sensitivity to base rate information when 
making diagnostic inferences. Gigerenzer and 
Hoffrage (1995; see also Sedlmeier & Gigerenzer, 
2001) provided the information in the mammogra-
phy problem and several other problems as natural 
frequencies (i.e., the joint frequencies of cause and 
effect, such as the number of women who have can-
cer and have a positive mammogram). Providing 
information this way facilitates derivation of the 
diagnostic probability because Equation 2 can be 
used and base rate information does not need to be 
introduced via Bayes’s rule. These findings served as 
starting point for identifying and characterizing the 
circumstances under which base rate information 
is utilized and have informed more applied issues, 
such as risk communication in medicine (for a 
review, see Meder & Gigerenzer, 2014).

The question of whether and to what extent peo-
ple use base rate information has been the focus of 
many studies on elemental diagnostic reasoning. In 
contrast, the relation between causal inference and 
elemental diagnostic reasoning has received surpris-
ingly little attention in the literature, with respect to 
both normative and descriptive issues. Ajzen (1977) 
noted that “people utilize information, including 
information supplied by population base rates, to 
the extent that they find it possible to incorporate 
the information within their intuitive theories of 
cause and effect” (p. 312). At that time, however, 
the necessary tools for a formal treatment of diag-
nostic reasoning in terms of causal inference were 
not yet available, so that the exact nature of the 
interplay between diagnostic reasoning and causal 
representations was left largely unspecified (see also 
Tversky & Kahneman, 1982a, 1982b). Recent the-
oretical advances in causal modeling have made it 
possible to address this issue in a more rigorous way.
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Power PC Theory: Diagnostic Reasoning 
Under Causal Power Assumptions

In contrast to the simple Bayes account, Cheng’s 
(1997) power PC theory separates the data level (i.e., 
covariation information) from estimates of causal 
power that refer to the underlying but unobservable 
causal relations. The theory assumes that people 
aim to infer causal strength estimates because one 
goal of cognitive systems is to acquire knowledge of 
stable causal relations, rather than arbitrary statisti-
cal associations in noisy environments.

The theoretical assumptions underlying the 
power PC model instantiate a particular gen-
erative causal structure known as a noisy- OR gate 
(Glymour, 2003; Pearl, 1988): a common- effect 
structure with an observable effect E and two causes, 
namely an observable cause C and an amalgam of 
unobservable background causes A, which can inde-
pendently bring about the effect (graph S1 in Figure 
23.1 c). The original version of the power PC model 
(Cheng, 1997) is equivalent to estimating the prob-
ability of C bringing about E (i.e., causal power) 
in causal structure S1 using maximum likelihood 
estimates (MLEs) for the parameters derived from 
the relative frequencies in the data (see Griffiths & 
Tenenbaum, 2005, for a formal proof ). An estimate 
for the strength of the background cause A, denoted 
wa, is given by P(e|¬c) in the sample data, as the 
occurrence of E in the absence of C necessarily has 
to be attributed to some (unknown) background 
cause or causes (for mathematical convenience, A 
is assumed to be constantly present; Cheng, 1997; 
Griffiths & Tenenbaum, 2005). The observed rate 
of occurrence of C in the sample, P(c), provides 
an estimate of the base rate of C, denoted bc. The 
unobservable probability with which C produces 
E, its generative causal power, is denoted wc (see 
Cheng, 1997, for analogous derivations for preven-
tive causal power). This estimate of causal strength 
is computed from P(e|c) by partializing out the 
influence of the background causes that may also 
have generated the effect (Cheng, 1997).1 It can be 
estimated from the observed relative frequencies by

w
P e c P e c

P e cc =
( ) − ¬

− ¬
| ( | )

( | )1
 (3)

Waldmann and colleagues (2008) showed how 
diagnostic inferences can be modeled in the power 
PC framework, that is, using the parameters of 
causal structure S1. Given the causal structure’s 
parameters and a noisy- OR parameterization, the 

diagnostic probability of candidate cause c given an 
effect e is given by

P c e
P e c P c

P e c P c P e c P c
w b w b w wc c a c c a

|
|

| |
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( )⋅ ( )
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=
+ − bbc

c c a c a cw b w w w b+ −
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(4)

If this diagnostic inference is based on maximum 
likelihood point estimates directly derived from the 
observed frequencies, the power PC model yields 
the same numeric predictions as the simple Bayes 
approach. For instance, for the data set shown in 
Figure 23.1 b, the standard power PC account pre-
dicts that P(c|e) = .75.2 Thus, although the inference 
operates on the causal rather than the data level, the 
two accounts make the same prediction, namely, 
that diagnostic judgments should reflect the empiri-
cal conditional probability of the cause given the 
effect in the sample data.

A Bayesian variant of the power PC model can 
be implemented by associating prior distributions 
with the parameters of structure S1 and updating 
the parameter distributions in light of the available 
data via Bayesian updating (Holyoak et  al., 2010; 
Lu et al., 2008). In this case, the predictions of the 
power PC model do not necessarily correspond to 
the simple Bayes model, with the specific differences 
varying as a function of the prior and sample size 
used (see Meder et al., 2014, for a detailed discus-
sion and example predictions). Bayesian variants of 
the power PC account allow it to incorporate prior 
knowledge and expectations of the reasoner into the 
diagnostic inference task via specific priors over the 
parameters of structure S1 (Lu et al., 2008) and are 
also able to quantify (via distributions over param-
eters) the amount of uncertainty associated with the 
parameter estimates of structure S1.

empiriCal studies
Krynski and Tenenbaum (2007; see also Hayes, 

Hawkins, & Newell, 2015)  studied the role of 
causal structure in elemental diagnostic reasoning 
tasks designed to investigate the use of base rate 
information, such as the mammography problem 
(Eddy, 1982; Gigerenzer & Hoffrage, 1995). The 
question they were interested in was whether peo-
ple’s diagnostic inferences would be mediated by 
the match between the provided statistics and the 
causal representations that people construct from 
the task information (e.g., a causal structure with 
one observed and one unobserved cause, or a causal 
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structure with two observed causes). According to 
their experiments, when the given statistics can be 
clearly mapped onto the structure of the respective 
mental causal model, people’s diagnostic inferences 
are more sensitive to normatively relevant vari-
ables, such as base rate information. For instance, 
if in the mammography problem an explicit cause 
for the false positive rate is provided (e.g., a benign 
cyst that can also cause a positive mammogram), 
people’s diagnostic judgments improve substantially 
relative to the standard version of the problem in 
which no causal explanation for the false positive 
rate is provided.

In follow- up research, McNair and Feeney 
(2014; see also McNair & Feeney, 2015) explored 
the role of individual differences. They assessed 
people’s numeracy, that is, the ability to perform 
elementary mathematical operations (Cokely, 
Galesic, Schulz, Ghazal, & Garcia- Retamero, 
2012; Lipkus, Samsa, & Rimer, 2001). According 
to their results, clarifying the causal structure 
among the domain variables seems helpful only for 
participants with high numeracy skills; the perfor-
mance of participants with low numeracy did not 
improve.

Fernbach, Darlow, and Sloman (2010, 2011) 
investigated to what extent people consider the 
influence of alternative causes in diagnostic rea-
soning from effect to cause, compared with pre-
dictive reasoning from cause to effect. They used a 
simple causal Bayes net equivalent to the power PC 
model (structure S1; Figure 23.1 c) as the normative 
benchmark for people’s predictive and diagnostic 
inferences. To derive model predictions for differ-
ent real- world scenarios, they elicited participants’ 
existing causal beliefs about the relevant quantities, 
that is, the parameters associated with structure S1 
(base rate bc, causal strength wc, and strength of 
alternative causes, wa). For instance, Fernbach and 
colleagues (2011) asked participants to estimate the 
prior probability that a mother of a newborn baby is 
drug addicted, how likely it is that the mother’s drug 
addiction causes her baby to be drug addicted, and 
how likely a newborn baby is to be drug addicted if 
the mother is not. These estimates were then used 
to derive model predictions for predictive and diag-
nostic inferences (e.g., estimates for how likely a 
baby is to be drug addicted given that the mother 
is drug addicted, and how likely a mother is to be 
drug addicted given that her baby is drug addicted). 
Different methods were used across experiments, 
such as deriving posterior distributions of P(c|e) and 
P(e|c) via sampling from participants’ estimates, or 

generating predictions for each reasoner separately 
based on his or her individual estimates. According 
to their findings, people are more sensitive to the 
existence and strength of alternative causes when 
reasoning diagnostically from effect to cause than 
when making predictive inferences from cause 
to effect (but see Meder et  al., 2014; Tversky & 
Kahneman, 1982a).

Structure Induction Model:   
Diagnostic Reasoning with Causal   
Structure Uncertainty

Although the power PC model operates on causal 
parameters that are estimated from the observed 
data (in one way or another), it brings the strong 
assumption to the task that there is actually a causal 
link between C and E. The only situation in which 
the account assumes that there is no causal relation 
is when P(c|e) = P(c|¬e), and therefore wc = 0. This 
approach lacks the expressive power to take into 
account the possibility that an observed contin-
gency in the data [i.e., P(c|e) ≠ P(c|¬e)] is just coinci-
dental. Consider again the data set in Figure 23.1 b. 
The observed data indicate that the candidate cause 
(e.g., genetic predisposition) raises the probability 
of the effect (e.g., elevated blood pressure) from 
P(e|¬c) = 2/ 20 =  .1 to P(e|c) = 6/ 20 =  .3; accord-
ingly, the estimated causal strength of C is wc = 0.22 
(Equation 4). But how reliable is this estimate, given 
the available data? If the estimate is based on a data 
sample, it may well be that the observed contingency 
is merely accidental and not diagnostic for a causal 
relation. This is similar to a situation in which one 
tosses a fair coin 40 times— one would not be sur-
prised if the observed number of heads was not 
exactly 20 but, say, 24. The important point here is 
that when inductive inferences are drawn based on 
samples, there is usually uncertainty about whether 
the observed contingency is indicative of a causal 
relation or is merely coincidental.

The structure induction model of diagnostic rea-
soning (Meder, Mayrhofer, & Waldmann, 2009, 
2014) formalizes the intuition that diagnostic 
reasoning should be sensitive to the question of 
whether the sample data warrant the existence of a 
causal relation between C and E. The characteristic 
feature of the model is that it does not operate on 
a single causal structure, as the power PC model 
does (and its isomorphic Bayes nets representa-
tion, i.e., structure S1; Figure 23.1 c). Rather, it 
also considers the possibility that C and E are, in 
fact, independent of each other (Anderson, 1990; 
Griffiths & Tenenbaum, 2005; see also McKenzie 
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& Mikkelsen, 2007), as illustrated with structure S0 
in Figure 23.1 d. Importantly, the two causal struc-
tures have different implications for the diagnostic 
inference from cause to effect. Under S1, observing 
effect E provides (probabilistic) evidence for the 
presence of the cause, so that P(c|e) > P(c) (except 
for the limiting case in which P(c|e) = P(c|¬e), and 
therefore wc = 0). For instance, for the data set in 
Figure 23.1 b, structure S1 entails that P(c|e) = .71. 
Note that this value is similar but not identical to 
the empirical probability of .75, with the diver-
gence resulting from the fact that the account does 
not use maximum likelihood but Bayesian esti-
mates (i.e., independent uniform priors over the 
structures’ parameters are used, which are updated 
in light of the available sample data). Structure S0, 
however, entails a very different value for the diag-
nostic probability. According to S0, C and E are 
independent events; therefore observing the pres-
ence of E does not increase the probability of C; 
that is, P(c|e) = P(c). Since in the data set shown in 
Figure 23.1 b the cause is present in 20 of the 40 
cases, S0 entails P(c|e) = P(c) = .5.

To take into account the diverging implications 
of the causal structures and their relative probability 
given the data, the structure induction model inte-
grates out the two structures to arrive at a single 
estimate for the diagnostic probability. Formally, 
this is done by weighting the two diagnostic esti-
mates derived from the parameterized structures by 
the corresponding posterior probability of structures 
S0 and S1, respectively (i.e., Bayesian model averag-
ing; Chickering & Heckerman, 1997), which are 
P(S0|data) = .49 and P(S1|data) = .51 in our example 
(assuming a uniform prior over the structures, i.e., 
P(S0) = P(S1) = .5). For instance, for the data set in 
Figure  23.1 b the structure induction model pre-
dicts P(c|e; data) =  .61, which results from weight-
ing each structure’s diagnostic estimate with the 
structure’s posterior probability (i.e., .49 × .5 + .51 
× .71 = .61). This diagnostic probability then reflects 
the uncertainty with respect to the true underlying 
causal structure and the uncertainty of the parameter 
estimates.3

In sum, the structure induction model of diag-
nostic reasoning takes into account uncertainty 
regarding possible causal models that may have 
generated the observed data. As a consequence, the 
derived diagnostic probabilities can systematically 
deviate from the empirical diagnostic probability of 
a cause given an effect in the sample data and the 
predictions of the simple Bayes account and power 
PC theory.

empiriCal studies
Meder and colleagues (2014) tested the struc-

ture induction model using a medical diagnosis 
paradigm in which participants were provided with 
learning data about the co- occurrences of a (ficti-
tious) virus and a (fictitious) symptom. Given this 
sample data, participants were asked to make a 
diagnostic judgment for a novel patient who has the 
symptom. The studies used nine different data sets, 
factorially combining different levels of the (empiri-
cal) diagnostic probability, P(c|e), with different lev-
els of the (empirical) predictive probability, P(e|c). 
The experimental rationale was to fix the empirical 
diagnostic probability but to vary other aspects of 
the data in order to generate predictions that dis-
tinguish the structure induction model from the 
simple Bayes model and different variants of power 
PC theory.

Consider Figure 23.2 a: in all three data sets the 
base rate of the cause is P(c) = P(¬c) =  .5 and the 
empirical diagnostic probability is P(c|e) =  .75. In 
contrast, the predictive probability of effect given 
cause, P(e|c), and the causal strength of C, wc, vary 
across the three data sets (from left to right the causal 
strength estimate increases; Equation 3). Figure 
23.2 b shows the models’ predictions for the three 
data sets. The simple Bayes and power PC model 
entail the same diagnostic judgment across the data 
sets, since the empirical diagnostic probability is 
invariant. The structure induction model, however, 
makes a very different prediction, entailing diag-
nostic probabilities that systematically deviate from 
the empirical diagnostic probability. Specifically, 
the model predicts an upward trend, yielding an 
increasing probability of target cause c given the 
effect e across the data sets. This upward trend 
results from the posterior probabilities of structures 
S0 and S1, whose posterior Bayesian estimates vary 
across the data samples (see Meder et al., 2014, for 
details). As a consequence, the inferred diagnostic 
probability increases when the posterior probability 
of S1 becomes higher (i.e., when it becomes more 
likely that the observed contingency is indicative of 
an underlying causal relation).

Empirically, participants’ diagnostic judgments 
showed the upward trends predicted by the struc-
ture induction model, that is, human diagnostic 
judgments were not invariant for different data 
sets entailing the same empirical diagnostic prob-
ability P(c|e). These studies demonstrated that peo-
ple’s diagnostic judgments do not solely reflect the 
empirical probability of a cause given an effect, but 
systematically vary as a function of causal structure 
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uncertainty. These findings support the idea that 
people’s diagnostic inferences operate on the causal 
level, rather than on the data level, and that their 
diagnostic inferences are sensitive to alternative 
causal structures that may underlie the data.

Summary: Elemental Diagnostic Reasoning
Different computational models of elemental 

diagnostic inference share the assumption that the 
goal of the diagnostic reasoner is to infer the condi-
tional probability of the candidate cause given the 
effect. However, the accounts differ strongly in their 
theoretical assumptions and the ways in which the 
diagnostic probability is computed from the avail-
able data. The simple Bayes model, which is usu-
ally presumed to provide the rational benchmark 
in diagnostic reasoning, prescribes that causal judg-
ments should reflect the empirical probability of the 
cause given the effect in the data. Power PC theory 

and its isomorphic Bayes net representation concep-
tualize diagnostic reasoning as an inference on the 
causal level, using structure S1 as the default struc-
ture. The structure induction model advances this 
idea by considering a causal structure hypothesis 
according to which C and E are in fact independent 
events, with the inferred diagnostic probability tak-
ing into account the uncertainty about the existence 
of a causal relation. As a consequence, diagnostic 
probabilities derived from the structure induction 
model can systematically diverge from the empirical 
probability of the cause given the effect.

Diagnostic Reasoning with Multiple   
Causes and Effects

Our discussion thus far has centered on elemental 
diagnostic inferences from a single effect to a single 
cause. In this section, we discuss diagnostic causal 
reasoning with more complex causal models that 
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Figure 23.2 Predictions of different computational models of elemental diagnostic inference. (a) Three data sets in which the 
empirical diagnostic probability of a cause given an effect is P(c|e) = .75. The predictive probability, P(e|c), and the causal strength of 
C, wc, vary across the data sets (numbers are maximum likelihood estimates of causal power, based on the empirical probabilities.) 
(b) Predictions of the structure induction model, the simple Bayes model, and the power PC model, using maximum likelihood 
estimates (MLEs), for the three data sets. The latter two models predict identical diagnostic probabilities across the data sets, whereas 
the structure induction model predicts a systematic upward trend, resulting from different structure posteriors entailed by the data 
samples. 
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can involve multiple causes or effects. For instance, 
the same symptom could be caused by different dis-
eases, such as a viral or bacterial infection. In this 
case, a single piece of evidence can have differential 
diagnostic implications for different possible causes. 
Conversely, a viral infection (cause) can generate 
several symptoms (effects), such as headache, fever, 
and nausea. In this case, different pieces of evidence 
need to be combined to make a diagnostic judg-
ment about one target cause.

In the framework of probabilistic inference over 
graphical causal models, the causal dependencies in 
the graph determine the factorization of the joint 
probability distribution over the domain variables 
(Pearl, 2000; Spirtes et al., 1993). The factorization 
follows from applying the causal Markov condi-
tion to the graph, which states that the value of any 
variable in the graph is a function only of its direct 
causes (its Markovian parents). In other words, con-
ditional on its direct causes, each variable in the 
model is independent of all other variables, except 
its causal descendants (i.e., its direct and indirect 
effects). This causally based factorization implies 
specific relations of conditional dependence and 
independence for the probability distribution asso-
ciated with the graph, which facilitate and constrain 
inferences across multiple variables. Importantly for 
the present discussion, the particular dependency 
and independency relations entail specific diagnos-
tic inference patterns when reasoning with different 
causal structures.

In the following, we discuss key issues related 
to diagnostic reasoning in causal models with 
multiple causes or effects, focusing on common- 
effect and common- cause models (see also Rehder, 
Chapters 20 and 21, and Rottman, Chapter 6, in 
this volume). Subsequently, we address the rela-
tion between diagnostic reasoning and information 
search, which is an important aspect of diagnostic 
reasoning in a broader sense.

Diagnostic Reasoning with Common- Effect 
Structures: Explaining Away

An important property of diagnostic reason-
ing in common- effect structures is explaining 
away (Morris & Larrick, 1995; Pearl, 1988, 2000; 
Rottman & Hastie, 2014).4 Consider the example 
of a common- effect structure shown in Figure 
23.3 a, according to which C1 = {c1, ¬c1} (e.g., virus 
present vs. absent) and C2  =  {c2, ¬c2} (e.g., bacte-
ria present vs. absent) are independent, not mutu-
ally exclusive, causes of a common effect E = {e, ¬e} 
(e.g., symptom present vs. absent). Associated with 

the causal structure is a set of parameters: the base 
rates of the two cause events, their respective causal 
strengths, and the strength of the background cause 
(not shown). These parameters fully specify the 
joint probability distribution over the two causes 
and the effect.

Figure 23.3 shows an example data set for 100 
cases generated from setting the base rate of each 
independent cause to .5 and the strength of the 
background cause to zero (i.e., the effect never 
occurs when both C1 and C2 are absent). The two 
causes, virus and bacteria, vary in their causal 
strength: a virus infection (C1) generates the symp-
tom with a probability of .8, and a bacterial infec-
tion (C2) generates the symptom with a probability 
of .6 (in this example scenario, C1 and C2 are the 
sole causes of E, i.e., there are no alternative back-
ground causes; therefore these probabilities corre-
spond to the individual causal power estimates of C1 
and C2).

5 Assuming a noisy- OR parameterization, 
the probability of the symptom is .92 when both 
causes are present (i.e., P(e|c1, c2) = wc1 + wc2 − wc1wc2 
= .8 + .6 − .8 ⋅ .6 = .92).

Explaining away occurs in common- effect struc-
tures when reasoning diagnostically from the effect 
to the causes. Since both C1 and C2 are (independent) 
causes of their common effect, observing the pres-
ence of the effect raises the probability of both: If we 
know that a patient has the symptom, this increases 
the probability of having a virus as well as of hav-
ing a bacterial infection. The particular diagnostic 
probabilities depend on the causes’ base rates and 
their causal strengths, as well as on the strength of 
the unobserved background causes. For instance, 
for the example data in Figure 23.3 b, P(c1|e) = 43/ 
58 = .74 and P(c2|e) = 38/ 58 = .66: both causes are 
equally likely a priori, but C1 is more likely to cause 
the symptom, so the diagnostic probability for C1 
is higher than for C2. This diagnostic inference can 
be modeled by Bayes’s rule using a structure param-
eterized with conditional probability estimates 
(Pearl, 1988) or using estimates of causal strength, 
as similarly discussed in the section on elemental 
diagnostic reasoning. If available, the diagnostic 
probabilities can also be computed directly from a 
joint frequency distribution, as done above with the 
example data in Figure 23.3 b.

Explaining away with respect to some target cause 
occurs when conditioning not only on the effect, 
but also on the known presence of an alternative 
cause. In the present scenario, with respect to cause 
C1, explaining away corresponds to the inequal-
ity P(c1|e) > P(c1|e, c2). In words, the diagnostic 
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probability of cause c1 conditional on effect e alone 
is higher than when conditioning on both the effect 
e and the alternative cause c2; thus, the presence of 
c2 explains away some of the diagnostic evidence 
of e with respect to c1. Consider again the medical 
scenario:  if a patient has the symptom, reasoning 
diagnostically increases the probability of the virus 
being present. Now imagine you also learn that the 
patient has a bacterial infection, which is the other 
of the two possible causes that could have produced 
the symptom. Intuitively, if we learn that the patient 

has a bacterial infection this “explains away” (some 
of ) the diagnostic evidence of the symptom regard-
ing the presence of the virus; that is, it reduces the 
probability of the virus being present relative to a 
situation in which we only condition on the effect.

Consider the example data set shown in Figure 
23.3 b:  Given this joint frequency distribution, 
what are the diagnostic probabilities P(c1|e) and 
P(c1|e, c2)? In other words, how likely is the 
virus to be present if the symptom is present, 
and how likely is the virus to be present given 
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Figure 23.3 Explaining away. (a) A common- effect model with the independent, not mutually exclusive causes C1 = {c1, ¬c1} and 
C2 = {c2, ¬c2}, virus and bacteria, and an effect E = {e, ¬e}, a symptom. (b) Joint frequency distribution generated from a noisy- OR 
parameterization of the common- effect model, assuming no background cause and P(e|c1, ¬c2) = .8 and P(e|¬c1, c2) = .6. (c) Explaining 
away of c1 across different prior probabilities of the two causes, with P(c1) = P(c2). The difference between P(c1|e) and P(c1|e, c2) is the 
amount of explaining away, exemplified with the two diagnostic probabilities for P(c1) = P(c2) = .5. 
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the presence of both the symptom and the bac-
teria? Based on the joint frequency distribution, 
P(c1|e) = 43/ 58 = .74; that is, the virus is present 
in about 74% of the cases in which the symptom 
is present. The probability of c1 given both e and 
c2 can be computed analogously, yielding P(c1|e, 
c2) = 23/ 38 =  .61; that is, the virus is present in 
about 61% of the cases in which both the symp-
tom and the bacteria are present— the presence of 
the alternative cause c2 has “explained away” some 
of the diagnostic evidence of e with respect to c1. 
The amount of explaining away is the difference 
between the two diagnostic probabilities; that is, 
P(c1|e) –  P(c1|e, c2) = .13. Note that the probability 
of c1 does not reduce to zero: Because the virus and 
the bacterial infection are independently occur-
ring causes, the presence of the bacterial infection 
does not rule out that the patient also has a viral 
infection— it only makes it less likely than before 
(see Morris & Larrick, 1995, for a detailed analy-
sis of the conditions of explaining away). In fact, 
the diagnostic probability is still higher than the 
base rate of the virus, which is .5 in this example.

Figure 23.3 c (cf. Figure 5 in Morris & Larrick, 
1995)  illustrates a more general case, showing the 
amount of explaining away for different base rates 
of the two cause events, under the constraint that 
P(c1) = P(c2). The causal strengths are fixed to the 
values as above (i.e., the individual likelihoods are .8 
for c1 and .6 for c2, no background cause, noisy- OR 
parameterization). The curves correspond to the two 
diagnostic probabilities P(c1|e) and P(c1|e, c2) across 
different base rates of the two causes, showing how 
the amount of explaining away varies as a function 
of the causes’ prior probability. The two dots are the 
data points from the preceding example, in which 
P(c1) = P(c2) = .5.

empiriCal studies
Empirical research on explaining away in diag-

nostic causal reasoning with common- effect struc-
tures has yielded mixed findings. While there are 
many studies on discounting in a broader sense (see 
Khemlani & Oppenheimer, 2011, for an overview), 
there are few studies that have directly investigated 
explaining away from the perspective of inductive 
causal inference.

Morris and Larrick (1995; Experiment 1) inves-
tigated whether and to what extent people demon-
strate explaining away in a social inference scenario. 
They used a paradigm by E.  E. Jones and Harris 
(1967), in which the task was to infer the political 
attitude of the writer of an essay E. For instance, 

the potential causes of a positive essay about Fidel 
Castro were a pro- Castro attitude (A) of the writer 
or the instruction (I) to write a positive essay. This 
situation can be conceptualized as a common- effect 
model A→E←I. The independence and base rate of 
I were instructed through a cover story; quantita-
tive model predictions were derived by eliciting par-
ticipants’ subjective judgments of the other relevant 
probabilities (e.g., base rates of causes A and I, the 
prevalence of pro- Castro attitudes and probability of 
having been instructed to write a pro- Castro essay, 
and corresponding likelihoods). Explaining away 
can be tested by comparing judgments for P(A|E), 
the probability that the writer has a positive attitude 
given a pro- Castro essay, with P(A|E, I), the prob-
ability that the writer has a positive attitude given 
a pro- Castro essay and given that the writer was 
instructed to write a positive essay. Consistent with 
explaining away, lower judgments for P(A|E, I) were 
obtained than for P(A|E): given a pro- Castro essay, 
participants increased their judgment of the prob-
ability that the writer had a pro- Castro attitude but 
lowered their judgments when informed that the 
writer had been instructed to write a positive essay.

More recent research has tested explaining away 
in the context of causal Bayes net theories. Rehder 
(2014; see also Rehder & Waldmann, in press) used 
common- effect structures with two binary causes 
and one binary effect in different domains, such as 
economics, meteorology, and sociology. Participants 
were taught qualitative causal models based on 
described causal relations between binarized vari-
ables, such as “a low amount of ozone causes high 
air pressure” or “low interest rates cause high retire-
ment savings.” The instructions also explicated the 
causal mechanisms underlying these relations (see 
Rehder, 2014, for details). No quantitative informa-
tion on the exact parameters of the instructed causal 
networks was provided; the studies focused on the 
qualitative diagnostic inference patterns. The studies 
used a forced- choice task in which participants were 
presented with a pair of situations, corresponding 
to judgments about P(c1|e) and P(c1|e, c2). The task 
was to choose in which situation a target cause C1 
was more likely to take a particular value: when only 
the state of the effect was known, or when both the 
effect and the alternative cause were known. If peo-
ple’s inferences exhibit explaining away, they should 
prefer the former over the latter, corresponding to 
the inequality P(c1|e) > P(c1|e, c2). Human behavior 
was at variance with explaining away; in fact, par-
ticipants tended to exhibit the opposite pattern [i.e., 
choosing P(c1|e, c2) over P(c1|e)].
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Rottman and Hastie (2015; see also Rottman & 
Hastie, 2016) investigated explaining away using a 
learning paradigm in which participants observed 
probabilistic data generated from a parameter-
ized common- effect model with binary variables. 
Quantitative predictions for patterns of explain-
ing away were derived from the parameterized 
causal model. However, people’s inferences were 
inconsistent with the model predictions, and 
most of the diagnostic judgments did not exhibit 
explaining away.

summary
The currently available evidence on explain-

ing away in human reasoning with common- effect 
models is limited. While some studies observed 
explaining away, others found diagnostic inference 
patterns at variance with explaining away. These 
are critical findings for adopting causal Bayes net 
theories as a modeling framework for human causal 
induction and diagnostic inference. Further empiri-
cal research is needed to identify and characterize 
the circumstances under which human diagnostic 
reasoning is sensitive to explaining away.

Diagnostic Inference in   
Common- Cause Structures:   
Sequential Diagnostic Reasoning

In many diagnostic- reasoning situations, such 
as medical diagnosis, several pieces of evidence 
(e.g., results of different medical tests) are observed 
sequentially at different points in time. In this case, 
multiple effects are used to reason about the pres-
ence of an underlying cause (e.g., a disease) con-
stituting a common- cause structure (Figure 23.4). 
Sequential diagnostic inferences also raise the ques-
tion of possible order effects (Hogarth & Einhorn, 
1992), such as those resulting from temporal weigh-
ing of the sequentially acquired information (e.g., 
primacy or recency effects).

Hayes, Hawkins, Newell, Pasqualino, and 
Rehder (2014; see also Hayes et  al., 2015), draw-
ing on the work of Krysnki and Tenenbaum (2007) 
discussed earlier, explored sequential diagnostic 
reasoning in the mammography problem (Eddy, 
1982). In the standard version of the problem, 
participants are presented with a single piece of 
evidence, a positive mammogram, and are asked 
to make an inference about the probability of the 
target cause, breast cancer. In the studies by Hayes 
and colleagues, diagnostic judgments based on one 
versus two positive test results from two different 
machines were elicited. The crucial manipulation 

concerned information on possible causes of 
false- positive results. In the non- causal condition, 
participants were merely informed about the rela-
tive frequency of false positives (e.g., that 15% of 
women without breast cancer had a positive mam-
mogram). In this situation, the false- positive rates 
of the two machines are assumed to be indepen-
dent of each other, so that the second mammo-
gram provides additional diagnostic evidence (i.e., 
participants’ diagnostic judgments regarding the 
target cause, breast cancer, should further increase 
relative to diagnostic judgments based on a single 
test result). In the causal condition, participants 
received the same statistical information but were 
also told about a possible alternative cause that can 
lead to false positives, a benign cyst. The underlying 
rationale was that the benign cyst would constitute 
a stable common cause within a tested person, so 
that a second positive mammogram provides little 
diagnostic value over the first one. Participants’ 
diagnostic judgments closely resembled these pre-
dictions:  in the non- causal condition the second 
mammogram was treated as providing further diag-
nostic evidence, raising the probability of the target 
cause relative to the situation with just a single posi-
tive test result. By contrast, in the causal condition 
the second positive mammogram had very little 
influence on diagnostic judgments. These findings 
show that people are sensitive to the causal under-
pinnings of different situations and their implica-
tions for probabilistic diagnostic inferences.

Meder and Mayrhofer (2013) investigated 
sequential diagnostic reasoning with a common- 
cause model consisting of a binary cause (two 
chemicals) and four binary effects (different symp-
toms, e.g., fever and headache). They presented 
participants with a series of three symptoms, 
one after the other, with a diagnostic judgment 
required after each piece of evidence. Information 
on the individual cause– effect relations was given 
either in a numerical format (e.g., “Chemical X 
causes symptom A in 66% of the cases”) or in ver-
bal frequency terms (e.g., “Chemical X frequently 
causes symptom A”). Diagnostic probabilities for 
the verbal reasoning condition were derived using 
the numerical equivalents of the used verbal terms 
from an unrelated study (Bocklisch, Bocklisch, & 
Krems, 2012; see Mosteller and Youtz, 1990, for 
an overview). The diagnostic task for participants 
was to estimate the posterior probabilities of the 
two causes, given all observed effects so far. In this 
study, people’s sequential diagnostic inferences 
were remarkably accurate, with judgments closely 
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tracking the diagnostic probabilities derived from 
the parameterized common- cause model. This 
was the case regardless of whether information on 
the cause– effect relations was provided numeri-
cally or through rather vague verbal frequency 
terms. This finding is also interesting with respect 
to studies showing Markov violations (see the fol-
lowing discussion), because participants’ diagnostic 
judgments were very close to the predictions of a 
common- cause model in which the effects are inde-
pendent given the cause. Finally, the study points 
to interindividual differences regarding the tempo-
ral weighting of evidence in sequential diagnostic 
reasoning. For instance, when previously observed 

symptoms had to be recalled from memory, the 
judged diagnostic probabilities reflected a stronger 
influence of the current evidence, relative to earlier 
observed symptoms.

Rebitschek, Bocklisch, Scholz, Krems, and Jahn 
(2015; see also Jahn & Braatz, 2014; Jahn, Stahnke, 
& Rebitschek, 2014; Rebitschek, Krems, & Jahn, 
2015) investigated order effects in sequential diag-
nostic reasoning more closely. They used a medical 
diagnosis task with four chemicals as possible causes 
and six symptom categories, with each category 
including two symptoms (e.g., “twinge” and “sting” 
belonged to the category “pain”). Participants 
were presented with four sequentially presented 
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symptoms, with the symptom sequences designed 
to examine possible order effects (e.g., whether it 
matters which of two hypotheses was supported 
more strongly by the first symptom, even if the 
total diagnostic evidence supported them equally). 
The diagnostic task was to choose the chemical that 
was most likely to have caused the symptom(s). 
Diagnostic judgments were obtained either after 
participants saw the full sequence of symptoms, 
or judgments were obtained after each symptom 
(see Hogarth & Einhorn, 1992, for a discussion of 
different elicitation methods with respect to order 
effects). Diagnostic judgments were not invariant 
with respect to presentation order, with the diagno-
ses often being influenced by the initially presented 
piece of evidence. This primacy effect was mediated 
by the testing procedure: diagnostic judgments after 
the full symptom sequence showed a strong primacy 
effect, whereas when participants were asked to rate 
their diagnostic beliefs after each symptom, the final 
diagnosis was only weakly influenced by the initially 
observed symptom. Moreover, the influence of late 
symptoms was revealed (i.e., recency effects).

summary aNd disCussioN
Diagnostic reasoning in common- cause models 

has been primarily investigated from the perspective 
of order effects. The exact nature of order effects, the 
conditions under which they occur, and how they 
can be formally modeled from the perspective of 
causal inference remain important issues for future 
research (see also Trueblood & Busemeyer, 2011).

In common- cause models, it is assumed that the 
effects are conditionally independent of each other 
given their common cause (i.e., Markov property), 
such that they provide independent evidence for 
the cause. (In the machine- learning literature, this 
property is referred to as class- conditional indepen-
dence of features, implemented in the naïve Bayes 
classifier; see Domingos & Pazzani, 1997; Jarecki, 
Meder, & Nelson, 2016.) Making this assumption 
strongly simplifies the diagnostic inference pro-
cess, because the number of estimates required to 
parameterize the causal structure is greatly reduced. 
However, a growing body of research on human 
causal reasoning shows that people’s inferences in 
related tasks, such as (conditional) predictive causal 
reasoning, do not honor the Markov condition 
(Mayrhofer & Waldmann, 2015a; Park & Sloman, 
2013; Rehder, 2014; Rehder & Burnett, 2005; 
Rottman & Hastie, 2015; Walsh & Sloman, 2008; 
but see Jarecki, Meder, & Nelson, 2013; von Sydow, 
Hagmayer, & Meder, 2015): typically people seem 

to expect a stronger correlation between effects of 
a common cause than normatively justified. These 
findings raise the question to what extent and under 
what conditions human causal reasoning is consis-
tent with the Markov condition and the entailed 
dependency and independency relations that should 
guide and constrain diagnostic inferences.

Diagnostic Reasoning and 
Information Search

How do people decide what information is diag-
nostically relevant? So far our discussion has focused 
on situations in which the reasoner makes diagnos-
tic inferences from one or more effects to possible 
causes. In many circumstances, however, diagnos-
tically relevant information needs to be actively 
acquired before making a diagnostic inference, such 
as when deciding which medical test to conduct.

A key theoretical question is how to quantify 
the diagnostic value of possible information queries 
(Nelson, 2005). Different models of the value of 
information have been proposed in the literature, 
based on a probabilistic framework. The mod-
els entail different types of informational utility 
functions that quantify the diagnostic value of a 
datum (e.g., the outcome of a medical test; Benish, 
1999)  according to some formal metric, such as 
expected reduction in uncertainty or expected 
improvement in classification accuracy. In the fol-
lowing, we introduce key ideas pertaining to diag-
nostic causal reasoning and discuss the application 
of information- theoretic concepts in empirical 
research.

Quantifying Diagnostic Value
Consider a medical scenario in which a virus 

(binary cause event C) probabilistically generates 
two symptoms, fever (E1) and nausea (E2). This 
scenario can be represented as a common- cause 
structure (Figure 23.4 a). The parameters associ-
ated with the causal structure are unconditional 
and conditional probabilities.6 The virus has a 
base rate of P(virus)  =  .3 and generates fever and 
nausea with likelihoods P(fever|virus)  =  .9 and 
P(nausea|virus) = 1/ 3. The symptoms can also occur 
in the absence of the virus, with P(fever|¬virus) = .4 
and P(nausea|¬virus) =  .1. Figure 23.4 b shows an 
example data set of 100 cases, generated from the 
parameterized common- cause model.

Now imagine a physician diagnosing a new 
patient. It is unknown if the patient has fever or 
nausea, but the doctor can acquire information 
about the symptoms. Is it more useful to find out 
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about the presence or absence of fever or nausea, 
respectively? Note the crucial difference in the diag-
nostic reasoning scenarios considered so far, where 
the diagnostic inference was based on knowing the 
state of the effect. In the present scenario, the critical 
question is which query is more useful to conduct, 
with the outcome being uncertain. For instance, 
when testing the patient for fever there are two 
possible outcomes, namely, fever or no fever. Both 
states have implications for the diagnostic inference 
about the virus, but prior to gathering information 
the state of the effect is uncertain.

Since the virus is causally related to both fever 
and nausea, learning about either of them pro-
vides diagnostic information about the presence of 
the virus. This is illustrated in the diagnostic tree 
in Figure 23.4 c, which shows the probability of 
observing the different symptom states, as well as 
the resulting posterior probabilities of the cause. 
For instance, if testing for the presence of fever 
(left branch), the probability that the patient has 
fever is .55, in which case the probability of the 
virus being present will increase to .49. Conversely, 
if the patient does not have fever, which happens 
with probability .45, the posterior probability of the 
virus being present is .07. (These probabilities can 
be computed from the parameterized causal model 
via Bayes’s rule or directly from the joint frequencies 
in Figure 23.4 b.)

But which query has higher diagnostic value: Is 
it better to test for the presence of fever or for the 
presence of nausea? The answer to this question cru-
cially depends on how we value a query’s outcome. 
Different measures for quantifying the usefulness of 
a datum (e.g., outcome of a medical test) have been 
suggested in statistics, philosophy of science, and 
psychology (for reviews, see Crupi & Tentori, 2014; 
Nelson, 2005). Typically, the different measures are 
based on a comparison of the prior versus posterior 
probability distributions, for each possible outcome 
of a query (a pre- posterior analysis, in the termi-
nology of Raiffa & Schlaifer, 1961). The expected 
usefulness of a query Q (e.g., a medical test) is com-
puted by weighting the usefulness of each possible 
query outcome by its probability of occurrence. In 
the present example there are two queries, referring 
to gathering information about whether the patient 
has fever or nausea, with each query having two 
possible outcomes (e.g., fever present or absent).

Importantly, alternative measures of the value 
of information are not formally equivalent, as they 
rank the usefulness of possible diagnostic queries 
differently (Nelson, 2005). To illustrate, we here 

focus on two prominent measures: information gain 
(Lindley, 1956), which values queries according to 
the expected reduction in uncertainty, measured via 
Shannon (1948) entropy, and probability gain, which 
values queries according to the expected improve-
ment in classification accuracy (Baron, 1985).

Information gain quantifies the usefulness of 
a datum by the expected reduction in Shannon 
entropy.7 (Note that in the expectation, informa-
tion gain is equivalent to Kullback- Leibler, [1951], 
divergence, although the usefulness of individual 
outcomes may differ.) In the current scenario, 
to compute the information gain of, say, testing 
a patient for the presence of fever, the posterior 
entropy of the cause’s distribution given the two 
possible test outcomes (fever vs. ¬fever) is consid-
ered. The information gain of a test outcome (which 
can be positive or negative) is the difference between 
the entropy of the prior distribution and the 
entropy of the posterior distribution, conditional 
on the status of the effect. The expected information 
gain is then computed by weighting the (positive 
or negative) gain of each possible outcome of the 
query by the probability of observing the outcome. 
Given the parameters of the common- cause model, 
the expected information gain of testing for fever 
is 0.172 bits. In other words, learning whether the 
patient has fever will, in the expectation, reduce the 
diagnostic reasoner’s uncertainty about the virus by 
0.172 bits.8 The analogous calculation for the alter-
native effect, nausea, yields an expected informa-
tion gain of 0.054 bits. Thus, from the perspective 
of uncertainty (entropy) reduction, testing a patient 
for the presence of fever is more useful than test-
ing for the presence of nausea, because the former 
entails a higher reduction in Shannon entropy.

A different model for quantifying the usefulness 
of diagnostic tests is probability gain (Baron, 1985), 
which values information by the expected improve-
ment in classification accuracy (Nelson, McKenzie, 
Cottrell, & Sejnowski, 2010). Formally, this mea-
sure is based on the difference in accuracy prior to 
conducting a query versus accuracy after conduct-
ing a query. Consider a patient drawn randomly 
from the data sample in Figure 23.4 b. If the goal is 
classification accuracy, one should predict the most 
likely hypothesis, namely, that the patient does not 
have the virus, because the virus is present in only 
30% of the cases (see Meder & Nelson, 2012, for 
analyses of scenarios with situation- specific pay-
offs). In other words, the probability of making a 
correct classification decision is .7 prior to obtaining 
any information about the effects (symptoms).
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Can a higher accuracy be expected if testing the 
patient for fever or nausea? The basic rationale is 
the same as with the information gain model. First, 
the posterior distribution of the cause given each 
state of the effect is considered. For instance, when 
fever is present, accuracy decreases to .51, because 
51% of patients with fever do not have the virus. By 
contrast, when the patient does not have fever, accu-
racy increases to .93, because in 93% of the cases 
the patient does not have the virus. To compute the 
overall probability gain of the query, an expectation 
is computed by weighting each outcome’s gain by 
the probability that a patient does or does not have 
fever. Interestingly, the expected probability gain 
of testing a patient for the presence of fever in our 
example is zero.9 Thus, from the perspective of the 
probability gain model this query is useless. By con-
trast, the same computations for the second effect, 
nausea, give a probability gain of .03, that is, testing 
a patient for the presence of nausea will, on aver-
age, increase classification accuracy by 3%. Thus, a 
diagnostic reasoner who aims to increase classifica-
tion accuracy should find out whether the patient 
has nausea. By contrast, a diagnostic reasoner who 
aims to reduce uncertainty should find out whether 
a patient has fever, because this query entails the 
higher expected reduction in Shannon entropy.

This divergence between different models of the 
value of information is critical because it highlights 
that the usefulness of possible queries depends on 
which metric is used to quantify the diagnostic 
value of information. In the scenario considered 
here, if the goal is to reduce uncertainty (measured 
via Shannon entropy) about the virus, the diagnos-
tic reasoner should test for the presence of fever. By 
contrast, if the goal is classification accuracy, the 
diagnostic reasoner should test for the presence of 
nausea. (Similar divergences hold for other models 
of the value of information; see Nelson et al., 2010.)

empiriCal studies
Different models of the value of information 

have been used to explain human behavior on a 
variety of cognitive tasks involving active infor-
mation acquisition (Austerweil & Griffiths, 2011; 
Baron & Hershey, 1988; Markant, Settles, & 
Gureckis, 2015; Meder & Nelson, 2012; Meier & 
Blair, 2013; Nelson et  al., 2010; Nelson, Divjak, 
Gudmundsdottir, Martignon, & Meder, 2014; 
Rusconi & McKenzie, 2013; Wells & Lindsay, 
1980). For instance, Oaksford and Chater (1994) 
re- analyzed Wason’s (1968) selection task from the 
perspective of inductive probabilistic inference, 

arguing that human behavior is inconsistent with 
the classic logico- deductive analysis but constitutes 
rational behavior from the perspective of active 
information sampling (Oaksford & Chater used 
Shannon entropy to quantify the usefulness of 
queries; Nelson, 2005, showed that alternative 
models of the value of information yield similar 
predictions). Crupi, Tentori, and Lombardi (2009) 
provided an analysis of the pseudodiagnosticity 
paradigm (Doherty, Mynatt, Tweney, & Schiavo, 
1979)— a task that has been interpreted to demon-
strate flawed human thinking regarding the diag-
nostic value of information. Crupi and colleagues 
showed that this interpretation relies on a specific 
model for computing diagnostic value, and that 
participants’ behavior is, in fact, consistent with 
seeking high- probability- gain information.

Most of these studies have not explicitly adopted 
a causal modeling framework, but there are impor-
tant connections between key theoretical ideas. 
Nelson and colleagues (2010; see also Meder & 
Nelson, 2012)  examined information search in 
a classification task. First, participants learned 
about the statistical structure of the environment 
in a trial- by- trial learning procedure, categorizing 
artificial biological stimuli into one of two classes 
based on two binary features. The generative model 
underlying the task environment corresponds to a 
common- cause structure, in which the likelihoods 
of the features are conditionally independent given 
the true class. This situation is analogous to the pre-
ceding common- cause scenario, with the class cor-
responding to the cause variable and the stimuli’s 
features corresponding to its effects. In a subse-
quent search task, learners could query one of the 
two features to obtain information before making 
a classification decision. The structure of the envi-
ronment was such that one query would improve 
classification accuracy (i.e., had higher probabil-
ity gain), whereas the alternative query was more 
useful from the perspective of information gain 
(or some other model of the value of information; 
Nelson and colleagues considered several models 
from the literature). Across several experiments, 
participants’ search behavior was best accounted 
for by probability gain. The studies also highlight 
the importance of how information about the rel-
evant probabilities is conveyed. A  clear preference 
for the diagnostic query with the higher probability 
gain was only obtained when people learned about 
the statistical structure of the environment through 
experience, whereas conveying probability informa-
tion (base rates and likelihoods) through words and 
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numbers was not very helpful for identifying the 
higher- probability- gain query, with search decisions 
often being close to chance level (see also Meder & 
Nelson, 2012).

Summary
There is a rich theoretical literature on quanti-

fying the diagnostic value of information queries. 
Different models have been suggested, based on dif-
ferent assumptions about what makes information 
valuable with respect to the goals of the diagnostic 
reasoner. An important insight is that different mod-
els can make similar predictions in many statistical 
environments (Nelson, 2005), which highlights 
the need for carefully designed experiments that 
allow researchers to disentangle competing models 
(Meder & Nelson, 2012; Nelson et al., 2010). This 
is also an important issue for the normative analysis 
of human search behavior and people’s sensitivity 
to the diagnostic value of queries (e.g., Crupi et al., 
2009; Oaksford & Chater, 1994).

Most empirical studies on information search 
have not explicitly adapted a causal modeling 
framework, but there are relations in terms of 
the generative models that have been used (e.g., 
the close relation between the independency rela-
tions in common- cause models and the notion of 
class- conditional independence, which can be con-
sidered a special case of the Markov condition). 
More recently, empirical studies on causal structure 
induction have applied different models of the value 
of information (see also Rottman, Chapter 6 in this 
volume). Steyvers and colleagues (2003) explored 
different variants of models based on information 
gain to predict intervention decisions on causal net-
works. Bramley et al. (2015) considered different 
models besides entropy reduction for quantifying 
the usefulness of interventions in causal structure 
learning. Coenen and colleagues (2015) contrasted 
information gain with a positive test strategy (e.g., 
Klayman & Ha, 1987) in structure induction. 
These studies provide pathways for future research 
by bringing together information- theoretic ideas of 
the diagnostic value of information with studies on 
human causal reasoning.

General Discussion
The goal of this chapter was to discuss diagnos-

tic reasoning from the perspective of causal infer-
ence. The computational framework that provides 
the foundation for our analyses, probabilistic infer-
ence over graphical causal models, makes it possible 
to implement a variety of different models that 

share the assumption that diagnostic inferences are 
guided and constrained by causal considerations. 
The first part of this chapter highlighted that causal- 
based models of diagnostic inference can make 
systematically different predictions from purely sta-
tistical accounts, such as the simple Bayes model. 
This is a critical insight for both the normative and 
descriptive analysis of human diagnostic reasoning, 
regardless of whether computational (or “rational”) 
models of cognition (in the sense of Marr, 1982, 
and Anderson, 1990) are treated as normative stan-
dards or psychological theories of human behavior 
(McKenzie, 2003). In the second part, we discussed 
more complex diagnostic inferences involving mul-
tiple causes or multiple effects. A  causal- model- 
based factorization of probability distributions 
entails specific relations of conditional dependence 
and independence among the domain variables, 
which constrain diagnostic inferences when reason-
ing with more complex causal models. The third 
section considered the question of how to quantify 
the diagnostic value of information. Deciding what 
information is diagnostically relevant is a key issue 
in diagnostic reasoning, and future research should 
aim to explicate the relations between models of 
diagnostic inference, measures of the value of infor-
mation, and human information- acquisition strate-
gies in the context of diagnostic causal reasoning.

Key Issues for Future Research
The analysis of diagnostic reasoning from the 

perspective of causal inference has provided a num-
ber of novel theoretical insights and guided empiri-
cal research on people’s diagnostic reasoning. In the 
following, we discuss theoretical and empirical key 
issues that should be addressed in future work.

the iNdetermiNaCy oF ratioNal models
The development of the framework of probabi-

listic inference over graphical causal models (Pearl, 
2000; Spirtes, Glymour, & Scheines, 1993)  has 
advanced research on human causal reasoning, 
from both a theoretical and an empirical perspec-
tive. One way to think about the relation between 
the general modeling framework and particular 
models is in terms of the “building blocks” that can 
be used to characterize existing models or develop 
new accounts. One differentiating feature concerns 
the question of parameter estimation and repre-
sentation, that is, whether a particular model uses 
maximum likelihood estimates (e.g., Cheng, 1997; 
Fernbach et al., 2011) or distributions over param-
eters (e.g., Holyoak et  al., 2010; Lu et  al., 2008; 
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Meder et al., 2014). In the case of elemental diag-
nostic reasoning, a power PC model based on maxi-
mum likelihood estimates directly derived from the 
data makes the same predictions as the simple Bayes 
model. A  Bayesian power PC model, in contrast, 
leads to different predictions, depending on what 
kinds of priors are used. Examples include uniform 
priors, which the structure induction model uses, 
the “sparse- and- strong” prior suggested by Lu and 
colleagues (2008), and a “sufficiency prior” formal-
izing a tendency to assume that causal relations are 
almost deterministic (i.e., high causal strengths; see 
Mayrhofer & Waldmann, 2011, 2015b; Yeung & 
Griffiths, 2015). Another key issue concerns the 
question of structure uncertainty. One idea is to use 
a single causal structure whose parameters are esti-
mated from data (in one way or another); another 
idea is to consider multiple causal structures that 
may have generated the data. These considerations 
can lead to quite different model behavior, as exem-
plified by the diverging predictions of the power PC 
account and the structure induction model. Another 
issue that we have not discussed so far concerns the 
functional form of the considered causal structures, 
that is, how multiple causes combine to generate an 
effect. We focused on a noisy- OR parameterization 
as a default functional form for how multiple causes 
produce the effect (Cheng, 1997; Pearl, 1988), but 
different functional forms are plausible in other cir-
cumstances (Novick & Cheng, 2004; Waldmann, 
2007). For instance, a causal model of a food allergy 
may state that two ingredients (e.g., peanuts and 
raisins) are jointly necessary to produce an allergic 
shock. Thus, the assumed functional form consti-
tutes another building block, with the question 
being whether the functional form is fixed or is 
assumed to be part of the inference problem (Lucas 
& Griffiths, 2010).

The upshot is that it is important to distinguish 
a computational modeling framework such as 
probabilistic inference over graphical causal models 
from the specific model instantiations, which can 
strongly differ in their scope and predictions. The 
framework supports the development of different 
computational models that can be tested empiri-
cally, but the framework itself is not subject to 
direct empirical tests. A  possible exception might 
be to test the psychological validity of central theo-
retical assumptions, such as people’s sensitivity to 
particular dependency and independency relations, 
based on the Markov condition (e.g., conditional 
independence in common- cause models or explain-
ing away in common- effect models).

In sum, research should be guided by competitive 
model testing. Instead of comparing human behav-
ior to a single “rational” model (Anderson, 1990), 
multiple (rational or otherwise) models should be 
considered and evaluated with respect to their psy-
chological validity and normative desirability.

From diagNostiC probabilities 
to estimates oF Causal respoNsibility

Models of diagnostic reasoning typically assume 
that the computational goal is to infer the prob-
ability of a cause given an effect. Another plausible 
goal of a reasoner might be a judgment of causal 
responsibility (or causal attribution). Such a diag-
nostic judgment refers to the probability that the 
occurrence of effect E was in fact brought about 
by target cause C, which is different from the diag-
nostic conditional probability P(c|e) (Cheng & 
Novick, 2005).

Consider a medical diagnosis scenario regarding 
the causal relation between a genetic predisposition 
and elevated blood pressure. Assume that a study 
tests 100 patients and finds that 50 have a genetic 
predisposition, so the cause’s empirical base rate in 
the sample is P(c) = P(¬c) = .5. Of the 50 patients 
with a genetic predisposition, 30 have elevated 
blood pressure, so P(e|c) =  .6. On the other hand, 
30 of the 50 patients without the genetic predis-
position also have elevated blood pressure; that is, 
P(e|¬c) =  .6. These estimates suggest that having a 
genetic predisposition does not raise the probabil-
ity of elevated blood pressure, which implies that 
the causal strength is zero (Equation 3). In this case, 
the probability that a patient from the sample with 
elevated blood pressure has the genetic predisposi-
tion is 50%, as P(c|e) = P(c) = .5.

A different diagnostic inference concerns the 
probability that the genetic predisposition is caus-
ally responsible for the elevated blood pressure. 
Intuitively, the answer to this question is very dif-
ferent: if there does not exist a causal relation, then 
the probability that the genetic predisposition is 
causally responsible for the elevated blood pressure 
is zero. (Note that the difference between estimates 
of diagnostic probability and estimates of causal 
responsibility holds not only when the data indi-
cate that there is no causal relation from C to E, 
but also in situations in which there is a relation, 
i.e., wc > 0.)

The difference between estimates of conditional 
probability and causal responsibility is intuitively 
plausible, but a purely statistical account of diag-
nostic reasoning (i.e., the simple Bayes model) lacks 
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the expressive power for providing a formal treat-
ment of causal responsibility. Cheng and Novick 
(2005; see also Holyoak et al., 2010) showed how to 
formally derive different estimates of causal respon-
sibility within power PC theory. Their analyses 
can also be incorporated into the structure induc-
tion model of diagnostic reasoning, which allows 
for deriving estimates of causal responsibility that 
take into account structure uncertainty (Meder   
et al., 2014). For instance, in the case of elemental 
diagnostic reasoning, an estimate of causal respon-
sibility is computed separately under structures S0 
and S1. According to structure S0 there is no causal 
relation between C and E; therefore this structure 
entails that estimates of causal responsibility are 
zero. Under structure S1, the model’s parameters are 
used to derive an estimate of causal responsibility, 
as in power PC theory. The final step is to integrate 
out the two causal structures, with the resulting 
estimate of causal responsibility depending on the 
relative posterior probabilities of the two structures.

The critical point is that depending on the goal 
of the diagnostic reasoner, different quantities are of 
interest, and these can systematically diverge from 
each other. A common assumption in the norma-
tive and descriptive analysis of diagnostic reason-
ing is that the computational goal is to assess the 
conditional probability of a cause given an effect. 
However, sometimes it might be more appropriate 
to ask for the probability that the effect was indeed 
brought about by the target cause.

With respect to empirical studies, little is known 
about the extent to which human diagnostic rea-
soners are sensitive to the distinction between dif-
ferent types of diagnostic inferences. Holyoak and 
colleagues (2010) used a Bayesian variant of the 
power PC causal attribution account to model pre-
dictive inferences and causal attribution judgments 
in the context of analogical reasoning. Meder and 
colleagues (2014) examined the power PC model 
of causal responsibility in the context of elemen-
tal diagnostic reasoning, in which the goal is to 
infer the conditional probability of a cause given 
an effect, but their studies were not specifically 
designed to investigate different types of diagnostic 
inferences. Stephan and Waldmann (2016) tested 
which model of causal responsibility best accounts 
for human judgments, pitting the standard power 
PC model and a Bayesian variant of it against the 
structure induction model. The results of three 
studies supported the structure induction model 
of causal responsibility, showing that people’s judg-
ments of causal responsibility are sensitive to causal 

structure uncertainty. These findings provide path-
ways for future research on different kinds of diag-
nostic inferences.

diagNostiC hypothesis geNeratioN
Throughout this chapter, we discussed diagnostic 

reasoning in situations in which the set of variables 
and their causal roles (i.e., causes vs. effects) were 
predefined and well specified. While this assump-
tion eases theoretical analysis as well as experimental 
consideration, in most real- world situations diag-
nostic inferences are embedded in a complex web 
of causally related and often unknown variables. 
This naturally raises the question of how diagnostic 
inferences might be carried out under such circum-
stances and how the causal structures on which the 
inferences operate are learned or determined.

The most unconstrained way is to infer the rele-
vant causal structure (i.e., causal roles of the variables, 
as well as the relations between them) directly from 
data, such as patterns of co- occurrences, as the causal 
structure of the world imposes constraints on the data 
that can potentially be observed (e.g., Gopnik et al., 
2004; Steyvers et  al., 2003). However, the number 
of possible causal structures that have to be taken 
into account grows exponentially with the number 
of variables considered, which poses several compu-
tational challenges. In addition, humans have been 
shown to fail in contingency- based structure induc-
tion, even in quite simple cases (Fernbach & Sloman, 
2009; White, 2006), unless specific constraints or 
assumptions are met (e.g., determinism; Deverett 
& Kemp, 2012; Mayrhofer & Waldmann, 2015b; 
Rothe, Deverett, Mayrhofer, & Kemp, 2016).

From a psychological perspective, it seems plau-
sible that humans consider only a subset of possible 
causal structures, with different cues to causality 
constraining the hypothesis space, such as tem-
poral information (Lagnado & Sloman, 2004, 
2006), hierarchical event structures (Johnson & 
Keil, 2014), linguistic markers in causal language 
(Mayrhofer & Waldmann, 2015a), and prior 
knowledge (Waldmann, 1996). In line with this 
idea, Griffiths and Tenenbaum (2007; Tenenbaum, 
Griffiths, & Niyogi, 2007) proposed a “causal gram-
mar” that specifies the variables that form the causal 
structure, the possible relations between the domain 
variables (i.e., their causal roles), and the functional 
form of the considered relations. This knowledge 
is at a higher level of abstraction than a specific 
causal structure hypothesis, much like a grammar 
in language constrains the set of possible sentences. 
This approach can be formalized as a hierarchical 
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Bayesian model, in which abstract knowledge about 
the domain generates and constrains the hypothesis 
space over the causal structures, thereby addressing 
the problem of combinatorial explosion (Griffiths 
& Tenenbaum, 2009).

A very different approach addresses the question 
of diagnostic hypothesis generation and evaluation 
from the perspective of memory processes and cue 
recall. According to the HyGene model (Thomas, 
Dougherty, Sprenger, & Harbison, 2008), diagnos-
tic hypotheses in long- term semantic memory are 
activated, matched against sampled probes (i.e., 
previously encountered and stored diagnosis– cue 
sets) from episodic memory, and then potentially 
placed in working memory (constituting the set 
of leading contending hypotheses) in an itera-
tive fashion. In the end, the diagnostic judgment 
for the target hypothesis is computed relative to 
the memory strengths of the alternatives in work-
ing memory. This model is non- causal in nature, 
as the causal relations between hypothesis (to- be- 
diagnosed causes) and cues are not relevant for 
judgments; essentially it can be applied— just like 
the simple Bayes model— to any arbitrarily related 
set of hypothesis and data.

Concluding Remarks
Research on diagnostic reasoning has a long 

tradition in psychology. Much of the literature on 
judgment and decision- making has focused on the 
conditions under which people utilize base rate 
information and make judgments in accordance 
with a simple statistical model, Bayes’s rule. We 
think it is time to take a fresh look at the prob-
lem of diagnostic reasoning from the perspective 
of causal inference under uncertainty. The frame-
work of probabilistic inference over graphical causal 
models provides a strong formal foundation for 
modeling diagnostic reasoning, and a variety of 
empirically testable models can be realized within 
this computational framework. The discussion on 
elemental diagnostic reasoning illustrates that there 
is not a single normative benchmark for diagnostic 
reasoning under uncertainty against which human 
behavior can be evaluated, but that different ideas 
exist about what may constitute an appropri-
ate standard of rational inference from effect(s) to 
cause(s). Importantly, these models make diverging 
predictions, for instance, on whether a diagnostic 
judgment should reflect solely the observed prob-
ability of a cause given an effect. A  key goal for 
future research is to systematically investigate the 
descriptive validity of the alternative accounts in 

different circumstances, as well as their theoretical 
behavior under different conditions. This will sup-
port the development of a comprehensive theory 
of human diagnostic reasoning that is informed 
and constrained by normative considerations and 
empirical data.
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Notes
 1. The noisy- OR gate assumes independent causes C and 

A; thus, the probability P(e|c) is given by wc + wa  –  wcwa, 
because when C is present E is present, when either C pro-
duced it (with probability wc ) or the background A gener-
ated it (with probability wa); the last term corrects for double 
counting cases in which both causes brought about E (with 
probability wcwa).

 2. For the data set in Figure  22.1 b, the maximum likeli-
hood estimates (MLEs) for the parameters of structure 
S1 (Figure  22.1C) are bc  =  0.5, wc  =  0.222, and wa  =  0.1. 
Plugging these number into Equation 4 yields P(c|e) = .75.

 3. From a mathematical perspective, the structure induction 
model contains Bayesian variants of power PC theory (e.g., 
Holyoak et al., 2010; Lu et al., 2008) as special cases. If the 
prior for structure S1 is set to 1, structure S0 plays no role 
when integrating out the structures to obtain a single esti-
mate for the diagnostic probability P(c|e). Note, however, 
that certain technical differences exist between proposed 
Bayesian variants of power PC theory and the structure 
induction model, such as the used priors (e.g., so- called 
sparse- and- strong priors in Lu et al., 2008, vs. uniform priors 
in the structure induction model in Meder et al., 2014).

 4. A  related term is discounting, which in the literature has 
sometimes been used interchangeably with the notion of 
explaining away, but also has been used to describe different 
empirical phenomena, such as variations in causal strength 
judgments of a target cause in the presence of alternative 
causes (e.g., Goedert, Harsch, & Spellman, 2005). See 
Khemlani and Oppenheimer (2011) for a review of the use 
of both terms and an overview of different models and find-
ings. We here focus on explaining away as conceptualized 
in the context of diagnostic inference over graphical causal 
models.

 5. More generally, estimating individual causal powers in situa-
tions with multiple causes according to Equation 2 requires 
conditioning on the absence of the alternative causes to 
determine the relevant strength estimates. See Cheng and 
Novick (1990, 1992; Melz, Cheng, Holyoak, & Waldmann, 
1993)  for details; see also Novick and Cheng (2004) for 
a formal analysis of strength estimates when causes are 
interacting.

 6. An alternative way would be to parameterize the model 
with causal strength estimates, analogous to the cases 
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discussed earlier. The computations for deriving the infor-
mation value of different queries as discussed later can then 
be based on these parameters (e.g., derivation of diagnostic 
probabilities via causal strength estimates; e.g., Equation 
4). To simplify matters, we here consider only the case in 
which the causal structure is parameterized by conditional 
probabilities.

 7. Other entropy measures besides Shannon (1948) could be 
used, for instance, the Rényi (1961) or Tsallis (1988) fami-
lies of entropy measures (for a detailed discussion, see Crupi, 
Nelson, Meder, Cevolani, & Tentori, 2016).

 8. If the patient has fever, the entropy increases, because the pos-
terior probability distribution over the cause (virus) is close to 
uniform (.49 vs. .51, respectively; Figure 22.4 c). Therefore, 
this datum entails a negative information gain (i.e., an 
increase in uncertainty about the true state of the cause vari-
able). (The entropy of a binary random variable is maximal 
when the distribution is uniform, i.e., both states are equi-
probable.) Conversely, if the patient has no fever, this datum 
decreases the entropy, because conditional on the absence of 
fever it is very likely that the virus is not present (.07 vs. .93; 
Figure 22.4 c). To compute the expected information gain of 
testing for fever, the individual gains are integrated by weigh-
ing each gain with the probability of observing each of the 
two states, fever vs. ¬fever (.55 vs. .45; Figure 22.4 c). (Values 
in the text are not based on the rounded values in the tree in 
Figure 22.4 c but are the exact values.)

 9. The probability gain model assumes that the diagnostic rea-
soner always selects the more likely hypothesis, i.e., uses an 
arg- max decision rule. Accuracy based on the prior distribu-
tion of the cause is .7. If fever is present, accuracy decreases 
to .51; the probability gain relative to the prior is negative. 
By contrast, when the patient does not have fever, accuracy 
increases to .93; accordingly, the probability gain is positive. To 
compute the overall probability gain of the query, an expecta-
tion is computed based on taking into account the probability 
of each state (i.e., that a patient does or does not have fever).
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